Birzeit University
 Faculty of Engineering
 Department of Civil and Environmental Engineering

ENCE 3331, Structural Analysis I

Homework assignment \#4

Due on Tuesday, April $2^{\text {nd }}, 2020 @ 8: 30$ AM.

Question 1: Using Double integration method, Answer the following questions

For the following beam: Determine

- Maximum deflection of the beam in terms of w, L, E, and I.
- The rotation of point B , if $\mathrm{w}=10 \mathrm{kN} / \mathrm{m}, \mathrm{L}=5 \mathrm{~m}, \mathrm{E}=75 \mathrm{GPa}$, and $\mathrm{I}=4 \times 10^{8} \mathrm{~mm}^{4}$.
- The minimum moment of inertia (I) so that the maximum deflection in the beam doesn't exceed $\left(\Delta_{\max }=\frac{L}{360}\right)$, if $\mathrm{w}=20 \mathrm{kN} / \mathrm{m}, \mathrm{L}=6 \mathrm{~m}, \mathrm{E}=200 \mathrm{GPa}$.

For the given frame Determine:

- The maximum horizontal displacement (sway) of the frame
- The vertical deflection of point D .

Question 2: Using Moment area method, answer the following questions
For the following beam, Determine:

- Deflection at point C.
- Deflection at point B.
- Rotation of point B.

For the following beam, determine:

- Deflection of Points B, and E.
- Rotation of points A, C, D, and E.

For the given beam, determine:

- Deflection of points B, and D.
- Rotation of points A, C, and E.

Question 3: Using conjugate beam method, answer the following questions
For the given beam, determine the minimum required moment of inertia so that the maximum deflection in the beam doesn't exceed $\Delta_{\max }=\frac{L}{240}$.

For the given beam, determine:

- Deflection of points B, and D.
- Rotation of points A, and C.

For the given beam, determine:

- Deflection of point B.
- Rotation of points A, and C.

